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Abstract
We have studied the ground-state phase diagram of a two-leg spin ladder with
anisotropic ferromagnetic leg couplings under the influence of a symmetry-
breaking transverse magnetic field by the exact diagonalization technique. In
the case of antiferromagnetic coupling between legs we identified two phase
transitions in the plane of magnetic field versus interchain coupling strength.
The first corresponds to the transition from the gapped rung-singlet phase to the
gapped stripe-ferromagnetic phase. The second represents the transition from
the gapped stripe-ferromagnetic phase into the fully polarized ferromagnetic
phase.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

There has been recently considerable interest in study of the magnetic field-induced effects
in low-dimensional quantum spin systems. In particular, the critical properties of the spin
S = 1/2 isotropic antiferromagnetic two-leg ladders in a magnetic field have been a field
of intense studies. This seems pertinent in the face of great progress made within the last
years in the fabrication of such ladder compounds [1]. Moreover, since the antiferromagnetic
two-leg ladder systems have a gap in the spin excitation spectrum, they reveal extremely rich
quantum behaviour in the presence of a magnetic field (see for recent review [2]). Such
quantum phase transitions in spin systems with a gapped excitation spectrum have indeed been
studied experimentally [3–8]. On the theoretical side these transitions have been intensively
investigated using different analytical and numerical techniques [9–23].

Ladder systems with ferromagnetic legs have been studied much less. The reason is partly
that spin-ladders with ferromagnetic legs have still not been fabricated. However, from the
theoretical point of view these systems are extremely interesting, since they open a new wide
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Figure 1. Schematic picture of the ground-state phase diagram of the two-leg ladder as a function
of the intraleg exchange anisotropy (�) and isotropic interleg coupling (J⊥) in the sector of
the phase diagram corresponding to the competing ferromagnetic intraleg (� > 0) and interleg
antiferromagnetic (J⊥ > 0) exchange considered in this paper. The spin-Luttinger-liquid phase is
denoted by SLL, and the stripe-ferromagnetic phase by SFM. (From [28].)

arena for the study of complicated quantum behaviour, unsuspected in more conventional
spin systems [9, 24–30]. The variety of open possibilities is clearly seen from the weak-
coupling phase diagram of a two-leg ferromagnetic ladder which is a function of the intraleg
exchange anisotropy (�) and the isotropic interleg coupling (J⊥) [28]; it is presented in
figure 1. In addition to the fully gapped rung-singlet phase (RS) (common in the case of an
antiferromagnetic ladder [9, 10]), the ground-state phase diagram contains the gapless spin-
Luttinger-liquid (SLL) phase with easy-plane anisotropy and the stripe-ferromagnetic (SFM)
phase which are realized only in the case of ferromagnetic legs (� > 0) [9, 28].

The very rich and interesting new phenomena arise in the case of competing ferromagnetic
intraleg and antiferromagnetic interleg couplings, in particular in the presence of a symmetry-
breaking magnetic field [28, 29]. The effect of the uniform magnetic field, applied parallel to
Z (quantization) axes, on the properties of two-leg ladder systems was first studied (in the case
of the equivalent spin S = 1 Heisenberg chain model) by Schulz [9]. In the case of the gapped
rung-singlet phase the magnetization appears only at a finite critical value of the magnetic
field equal to the spin gap [9, 12]. This behaviour is generic for spin-gapped U(1) symmetric
systems in a magnetic field which leaves the in-plane rotational invariance unchanged [30], and
belongs to the universality class of commensurate–incommensurate (C–IC) transitions [31].

The effect of a uniform transverse field in the case of the U(1) symmetric phase is highly
nontrivial. In the case of classical spin chains this effect was already studied a decade ago [32].
However, in the case of a quantum antiferromagnetic X X Z chain this problem is still the
subject of intense recent studies [32–41].

In this paper, we address a similar problem and study the effect of a uniform transverse
magnetic field on the ground-state phase diagram of a two-leg ladder with anisotropic,
ferromagnetically interacting legs coupled by antiferromagnetic interleg exchange. The
Hamiltonian of the model under consideration is given by

H = H (1)

leg + H (2)

leg + H⊥ (1)

where the Hamiltonian for leg j is

H ( j)
leg = −J

N∑

n=1

[(
sx

j,nsx
j,n+1 + sy

j,ns y
j,n+1 + �sz

j,nsz
j,n+1

) + hextsx
j,n

]
(2)
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Figure 2. Qualitative sketch of the weak-coupling phase diagram of a two-leg ferromagnetic ladder
as a function of the applied magnetic field (hext) and the isotropic interleg coupling (J⊥) [29]. In the
case of isotropic spin-exchange interaction in legs (� = 1) the spin-gapped rung-singlet (RS) phase
is separated from the fully polarized ferromagnetic (FM) phase via the gapless spin-Luttinger-liquid
(SLL) phase. In the case of finite intraleg exchange anisotropy (� �= 1) the RS phase is split from
the FM phase by the gapped stripe-ferromagnetic (SFM) phase.

and the interleg coupling is

H⊥ = J⊥
N∑

j=1

(
sx

1, j s
x
2, j + sy

1, j s
y
2, j + sz

1, j s
z
2, j

)
. (3)

Here sx,y,z
j,n are spin s = 1/2 operators on the nth rung, and the index j = 1, 2 denotes the

ladder legs. The intraleg coupling constant is ferromagnetic, J > 0, and therefore the limiting
case of isotropic ferromagnetic legs corresponds to � = 1 and the external magnetic field is
proportional to h = Jhext.

The model (1) has been studied recently using the continuum-limit bosonization
approach [28, 29]. The main attention in these studies was focused on the investigation of new
field-induced effects in the sector of the phase diagram corresponding to the gapless easy-plane
phase, present in the case of weak antiferromagnetic intraleg exchange 0 < J⊥ < J [9, 28].
It has been shown that, in the presence of an infinitesimally small transverse magnetic field
which breaks the in-plane rotational symmetry, the gapless phase is unstable towards the
gapped stripe-ferromagnetic (SFM) phase [29]. The SFM phase is characterized by uniform
magnetization in the direction of the applied field and opposite magnetization of legs in the
in-plane direction perpendicular to the field. It has also been shown that, when the magnetic
field exceeds some critical value, the interleg antiferromagnetic order disappears and the system
passes into the fully polarized ferromagnetic phase [29].

In the opposite case of strong rung exchange, J⊥ � J , an analytical description of the
magnetic properties of the system in the presence of a transverse magnetic field is available
only in the SU(2) symmetric case at � = 1. In this limiting case it has been shown that the
isotropic ladder in a magnetic field shows two second-order phase transitions: at hext = hext

c1
from a spin-gapped rung-singlet (RS) phase to a gapless spin-Luttinger-liquid (SLL) phase and
at hext = hext

c2 a transition from an SLL phase into the fully polarized ferromagnetic (FM) phase
(see figure 2(a)) [29].

In the case of finite intraleg exchange anisotropy (� �= 1), when the effect of the
symmetry-breaking transverse field is important, an analytical solution is not available.
However, based on the qualitative estimations and symmetry analysis, it has been shown that
the two-step transition from the RS into the FM phase is present also in the case of a ladder
with anisotropic legs [29]. In the same work it has been also predicted that for � �= 1 the RS
phase is separated from the FM phase by the gapped SFM phase (see figure 2(b)).
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In this paper we continue our studies of an anisotropic spin ladder in a transverse magnetic
field. In particular we apply the modified Lanczos method to diagonalize numerically finite
(N = 12, 16, 20, 24) ladder systems. Using the exact diagonalization results, we calculate
the spin gap, magnetization, various spin structure factors and the rung dimerization order
parameter as a function of applied transverse field for various values of the anisotropy parameter
� �= 1. Based on the exact diagonalization results we obtain the magnetic phase diagram of
ferromagnetic ladders with anisotropic legs showing two phase transitions in the plane of the
magnetic field versus interchain coupling, in agreement with the predictions made in [27].

The outline of the paper is as follows. In section 2 we briefly discuss the model in
the strong rung-coupling limit and derive the effective spin-chain Hamiltonian to outline the
symmetry aspects of the problem. In section 3 we present the results of exact diagonalization
calculations using the modified Lanczos method. Finally we conclude and summarize our
results in section 4.

2. Large rung-coupling results

In this section we briefly discuss the model (1) in the limiting case of strong rung coupling
J⊥ � J . In this limit the model (1) can be mapped onto the effective spin-chain
Hamiltonian [4, 16]. This allows us to outline the symmetry aspects of the problem under
consideration.

At J⊥ � J , it is convenient to discuss the model by representing the site-spin algebra in
terms of on-bond-spin operators [42]. Indeed an individual rung may be in a singlet or a triplet
state with the corresponding spectrum given by

E± =
(

J⊥
4

± hext

)
, E0 = J⊥

4
, Es = −3J⊥

4
.

At hext � J⊥, one component of the triplet becomes closer to the singlet ground state such
that for a strong enough magnetic field we have a situation that the singlet and the Sz = −1
component of the triplet create a new effective spin τ = 1/2 system. One can easily project the
original ladder Hamiltonian (1) on the new singlet–triplet subspace

|⇑〉 ≡ |s〉 = 1√
2
[|↑↓〉 − |↓↑〉], |⇓〉 ≡ |t−〉 = |↓↓〉.

This leads to the definition of the effective spin-1/2 operators:

S+
n,α=1,2 = (−1)n+α 1√

2
τ+

n , Sz
n,α=1,2 = 1

4
[I + 2τ z

n ]. (4)

The effective Hamiltonian in terms of the effective spin operators (4) up to the accuracy of an
irrelevant constant becomes the Hamiltonian of the spin-1/2 fully anisotropic XY Z chain in an
effective magnetic field,

Heff = −J
∑

i

[ 1
2τ z

n τ z
n+1 + τ y

n τ
y
n+1 + �τ x

n τ x
n+1] + heff

∑

n

τ z
n , (5)

where heff = hext − J⊥ + J/2. Note that in deriving (5), we have used a rotation in the effective
spin space which interchanges the x and z axes.

At � = 1, the effective problem reduces to the theory of the X X Z chain with a
fixed ferromagnetic XY anisotropy of 1/2 in a magnetic field, which allows for rigorous
analysis [29]. The gapped phase at heff < heff

c1 for the ladder corresponds to the negatively
saturated magnetization phase for the effective spin chain, whereas the massless phase for the
ladder corresponds to the finite magnetization phase of the effective spin-1/2 chain. The critical
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field heff
c2 corresponds to the fully magnetized phase of the effective spin chain where the ladder

is totally magnetized. From the exact ground-state phase diagram of the anisotropic X X Z chain
in a magnetic field [43], it is easy to check that heff

c1,c2 = ∓J/2. For the isotropic ferromagnetic
ladder in a magnetic field this corresponds to a transition from rung-dimers to the SLL phase at
hext

c1 = J⊥ − J and a transition from the SLL phase into the fully polarized phase at hext
c2 = J⊥

(see figure 2(a)). In this paper we compare the values of critical fields with the numerical results
of the exact diagonalization method.

Away from the isotropic point � = 1, the effective Hamiltonian (5) describes the fully
anisotropic ferromagnetic XY Z chain in a magnetic field that is directed perpendicular to the
easy axis. For the particular value of magnetic field heff = 0, the effective XY Z chain is
long-range ordered in the Y -direction [44]; accordingly, the original ladder system is ordered
in the direction perpendicular to the applied magnetic field with opposite magnetization on
legs (stripe-ferromagnetic phase). For larger values of the effective field it is clear that this
SFM order will be replaced either by the rung-singlet phase or the phase with only one order
parameter—magnetization along the applied field.

The exact diagonalization study of finite ladder systems (up to length L = 12 (N = 24))
shows that the magnetic phase diagram of the ferromagnetic ladder with anisotropic legs
in a transverse magnetic field really presents two quantum phase transitions with increasing
magnetic field. The first transition is from the gapped RS phase to the gapped SFM phase and
the second is from the SFM phase into the fully polarized FM phase (see figure 2(b)).

3. Exact diagonalization results

In order to explore the nature of the spectrum and the phase transition, we used the modified
Lanczos method [41, 45] to diagonalize numerically finite (N = 12, 16, 20, 24 sites) ladder
systems. The energies of the few lowest eigenstates were obtained for chains with periodic
boundary conditions.

To show that the transition lines can be easily observed from the numerical calculations
of small systems we start our consideration with the case of isotropic chains. In this case,
the magnetic field term commutes with the spin–spin exchange terms which makes the total
x-component (Sx

tot) of spin a conserved quantity. Thus, the energy levels of the ladder are
labelled by Sx

tot. We have computed the value of energy levels in the absence of a magnetic
field and added the effect of the magnetic field by −JhextSx

tot. This gives very high accuracy
for the values of the energy levels. In figure 3(a) we have plotted the three lowest levels of
N = 12, 16, 20 ladders with J⊥ = 2J as a function of the external field hext. We determine
the excitation gap in the system as the difference between the first excited state and the ground
state. As is clearly seen from this figure, in the case of zero magnetic field the spectrum of
the model is gapped. For hext �= 0 the gap decreases linearly with hext and vanishes at the
critical field, hext

c1 . This is the first level crossing between the ground-state energy and the first
excited state energy. To obtain an accurate estimate of hext

c1 we have obtained the first level
crossing for system sizes of N = 12, 16, 20, 24. The finite-size behaviour of this values leads
us to hext

c1 = 1.2 ± 0.01 for N → ∞. The spectrum remains gapless for hext
c1 < hext < hext

c2
and once again becomes gapped for hext > hext

c2 = 2.0. We got hext
c2 = 2.0 as an exact value

since there was no finite-size correction at this value. We should mention that the critical
field values obtained in the previous section come from the first-order (perturbation) effective
Hamiltonian approach and are not exact values. However, the values of the critical fields
hext

c1 and hext
c2 obtained from studies of the finite chains are very close to the values obtained

in the previous section. With increasing field, for hext � J⊥, J the gap increases linearly
with hext.

5
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Figure 3. Difference between the energy of the two lowest levels and the ground-state energy as
a function of the magnetic field, hext, for (a) J⊥ = 2J and � = 1.0 and (b) for J⊥ = 3J and
� = 0.5, including different ladder lengths N = 12, 16, 20.

It can be seen in figure 3(a) for the gapless sector of the phase diagram at hext
c1 < hext < hext

c2
that the two lowest states cross each other N/2 times, that the first crossing occurs at point hext

c1
and the last crossing occurs at the point hext

c2 . In this region we also observe numerous additional
level crossing between the lowest second and third eigenstates. These level crossings lead
to incommensurate effects that manifest themselves in the oscillatory behaviour of the spin
correlation functions. All crossings disappear at hext > hext

c2 and the correlation functions do
not contain oscillatory terms in this region of the phase diagram.

In marked contrast with the isotropic case, a similar analysis of the lowest few levels
for an anisotropic ladder in the presence of a transverse magnetic field reveal a principally
different behaviour. The energy difference between the two lowest levels and the ground-state
energy as a function of the magnetic field hext has been computed for J⊥ = 3J and J = 1.0
for different ladder lengths N = 12, 16, 20 and different values of the anisotropy parameter
� = 0.3, 0.5, 0.7. As an example, in figure 3(b) we have plotted results of these calculations
for � = 0.5. As is seen from the figure, the excitation spectrum in this case is gapfull except
at the two critical points hext

c1 = 2.3 ± 0.1 and hext
c2 = 3.0 ± 0.1. In the region of magnetic

fields hext
c1 < hext < hext

c2 the two lowest states form a twofold degenerate ground state in the
thermodynamic limit, and the spin gap, which appears at hext > hext

c1 , first increases versus
external field and after passing a maximum decreases, and vanishes at hext

c2 . At hext > hext
c2 the

gap once again opens and, for a sufficiently large field, becomes proportional to hext. These
results are in good agreement with the results obtained in the studies of the fully anisotropic
antiferromagnetic XY Z chain in a magnetic field [40].

To determine the properties of this model in different sectors of the phase diagram we have
implemented the modified Lanczos algorithm of finite-size ladders (N = 12, 16, 20, 24) to
calculate the magnetizations M x,y,z and spin structure factors S xx (q), S yy(q) and Szz(q).

In figure 4(a) we have plotted the magnetization along the applied transverse magnetic
field, M x versus hext, for N = 20, J⊥ = 3J and for different values of the anisotropy
parameter � = 0.3, 0.5, 0.7. Due to the profound effect of quantum fluctuations the
transverse magnetization remains small but finite for 0 < hext < hext

c1 and reaches zero at
hext = 0. This is in agreement with results obtained within the weak-coupling continuum-limit
bosonization treatment [29] and with the results for the magnetization obtained in the case

6
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Figure 4. (a) The transverse magnetization Mx as a function of applied field hext for an L = 10
ladder with J⊥ = 3.0J and for different values of the anisotropy parameter � = 0.3, 0.5, 0.7.
(b) The intraleg spin structure factor in the x direction at q = 0 for J⊥ = 3.0J and � = 0.5 plotted
as a function of the inverse ladder length L (L = N/2) for different strengths of the applied field
hext. The dashed line which corresponds to hext = hext

c1 = 2.3J marks the transition from the RS
phase to the intermediate phase with finite magnetization along the field and the dashed–dotted line
corresponds to hext = hext

c2 = 3.0J and marks the transition into the phase with full magnetization
along the field.

of a fully anisotropic XY Z chain [40]. For hext > hext
c1 , the magnetization increases linearly

with increasing field, once again in complete agreement with the predictions of bosonization
analysis [29]. This behaviour is in agreement with expectations, based on the general statement
that in the gapped rung-singlet phase, magnetization along the applied field appears only at
a finite critical value of the magnetic field equal to the spin gap [13–16]. However, in finite
systems we do not observe a sharp transition at this point (hext

c1 ) or close to the saturation value
which happens at hext > hext

c2 . Magnetization along the directions perpendicular to the applied
field remains small, but finite. However, as we will show below, for hext

c1 < hext < hext
c2 the

intraleg magnetization along the y direction is finite and it shows long-range ferromagnetic
order.

An additional insight into the nature of different phases can be obtained by studying the
spin–spin correlation functions. In particular we study the magnetic field dependence of the
different spin structure factors. We have calculated the intraleg spin structure factors defined by

Sαβ

leg (q) = 1

N

∑

n,r

〈 0|sα
j,nsβ

j,n+r |0 〉 eiqr . (6)

The field dependence of the intraleg spin structure factor S xx
leg(q = 0) is qualitatively the

same as that of the transverse magnetization Mx . In figure 4(b) we have plotted the intraleg
spin structure factor Sxx

leg(q = 0) for different strengths of the applied magnetic field chosen in
the vicinity of hext

c1,c2 as a function of the ladder length L. As is seen from this figure, the dashed
line which corresponds to hext = hext

c1 = 2.3 ± 0.1 marks the transition from the RS phase
to the intermediate phase with finite magnetization along the field and the dashed–dotted line
which corresponds to hext = hext

c2 = 3.0 ± 0.1 marks the transition into the phase with saturated
magnetization along the field.

In figure 5 we have plotted S yy
leg(q = 0) as a function of the applied field hext for L = 10,

J⊥ = 3J and different values of the anisotropy parameter � = 0.3, 0.5, 0.7. As is clearly

7
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Figure 5. The intraleg spin structure factor S yy
leg(q = 0) plotted as a function of the applied field

hext for an L = 10 ladder with J⊥ = 3.0J and for different values of the anisotropy parameter
� = 0.3, 0.5, 0.7.

seen from this figure, in complete agreement with the bosonization results [29], there is
no long-range ferromagnetic order along the y direction at hext < hext

c1 = 2.3 ± 0.1 and
hext > hext

c2 = 3.0 ± 0.1. However, in the intermediate region hext
c1 < hext < hext

c2 , the spins
of each leg show a profound ferromagnetic order in the y direction.

To display the magnetic phase diagram of the anisotropic ferromagnetic ladder in a
transverse magnetic field we have also calculated numerically the intrarung spin correlation
functions. We have computed the on-rung dimerization order parameter given by

dr = 1

N

∑

n

〈0|�s1,n · �s2,n|0〉. (7)

In figure 6(a) we have plotted dr as a function of hext for the ladder with J⊥ = 3J , � = 0.5
and for different values of the ladder lengths N = 12, 16, 20, 24. As is clearly seen from
this figure, for hext < hext

c1 , dr is close to −0.75, and the ladder is in the rung-singlet phase.
For hext > hext

c2 , dr is slightly less then the saturation value dr ∼ 0.25 and ferromagnetic
long-range order along the x axis is present. Deviation from the saturation values −0.75
and 0.25 is the result of quantum fluctuations. In this case of finite systems and with chosen
values of the rung exchange, the critical magnetic fields are high, and they strongly suppress
the quantum fluctuations. As a result the obtained averages of spin correlation functions are
very close to their classical saturation values. In the intermediate range of field the system
smoothly undergoes a transition from a RS phase into the FM phase via formation of the stripe-
ferromagnetic order.

To obtain additional data about the character of the spin ordering in the intermediate SFM
phase we have calculated the x , y and z components of the rung-singlet order parameter given
by

d j
r = 1

N

∑

n

〈 0| s j
1,ns j

2,n |0 〉, j = x, y, z. (8)

In figure 6(b) we have plotted dx , d y and dz as a function of the applied field hext for an
N = 24 ladder with J⊥ = 3J and for � = 0.5. As is seen from this figure, in the
RS phase, at hext < hext

c1 the system clearly shows SU(2) invariant order within the rung

8
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Figure 6. (a) The rung-singlet order parameter dr as a function of the applied magnetic field
hext for the ladder with J⊥ = 3.0J , � = 0.5 and for different values of the ladder length
N = 12, 16, 20, 24. (b) The rung-singlet order parameter dx

r , d y
r and dz

r as a function of the
applied magnetic field hext for the ladder with J⊥ = 3.0J , � = 0.5 and N = 24.

dx = d y = dz ∼ −0.25. For hext > hext
c1 the SU(2) invariance is broken; dx increases with

increasing field more quickly then the other two components and soon approaches positive
values corresponding to ferromagnetic order in the x direction, while d y = dz remain
negative, indicating the antiferromagnetic correlations in these components. This shows the
suppressed ferromagnetic order in the z direction, and the profound ferromagnetic response
of the y direction presents completely convincing arguments in support of the statement that,
for intermediate values of applied field, at hext

c1 < hext < hext
c2 ferromagnetic ordering in the x

direction of spin from both legs is accompanied by antiferromagnetic order in the y direction
of spins located on different legs and completely suppressed correlations in the z direction. It
corresponds to the stripe-ferromagnetic phase. Finally, for hext > hext

c2 the ordering in the y
and z directions are completely suppressed, and the system shows ferromagnetic order with
nominal magnetization per spin along the applied field.

4. Conclusions

We have studied the ground-state phase diagram of two-leg spin ladders with ferromagnetic
anisotropic legs in a transverse magnetic field. We have implemented the modified Lanczos
method to obtain the excited state energies with the same accuracy as the ground state energy.
Two quantum phase transitions in the ground state of the system with increasing magnetic
field have been identified. The first transition is the gapped rung-singlet to the gapped stripe-
ferromagnetic phase. The second is the transition from the gapped stripe-ferromagnetic phase
into the fully polarized ferromagnetic phase. These results are in complete agreement with the
results obtained from the bosonization treatment [29].
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